

# BEST PRACTICES IN WATER MANAGEMENT IN ITALY AND SWEDEN

CASE OF STUDY: ITALY THE EXPERIENCE OF EMILIAMBIENTE



CREATION OF THE DIGITAL TWIN OF THE WATERWORKS AND SEWERAGE SYSTEMS



### ABOUT US... .....WHAT WE DO?

The Integrated Water Service is the set of services connected with the useful use of water resources for humans, that is:

- 1) Groundwater collection;
- 2) Disinfection/purification;
- Transport (supply/distribution) to communal and household taps;
- 4) Wastewater collection in the sewerage systems;
- 5) Purification and release of wastewater without causing any damage to the ecosystem.

#### OUR WORK: AN OVERVIEW



### ABOUT US... .....WHERE DO WE DO OUR JOB?



EmiliAmbiente manages the Integrated Water Service for **11 Municipalities of the Province of Parma**, in the Emilia Romagna region, for a total resident population of **101,719 inhabitants**:

- BUSSETO
- COLORNO
- FIDENZA
- FONTANELLATO
- POLESINE ZIBELLO
- ROCCABIANCA
- SALSOMAGGIORE TERME
- SAN SECONDO PARMENSE
- SISSA TRECASALI
- SORAGNA
- TORRILE

EmiliAmbiente is a joint stock company (SpA), which is owned by 15 municipalities in the Parma area. Since its shareholders are Public Bodies – having a power of direction and control - it is defined as a "<u>publicly</u> <u>owned company</u>".



**Busseto** 



Colorno



**Polesine Zibello** 



San Secondo Parmense



Roccabianca



Soragna



Fidenza



Sissa Trecasali



Fontanellato



Salsomaggiore Terme



Torrile

### WATERWORKS: EMILIAMBIENTE'S WELLS





| RIFERIMENTO: COMMITTENTE EMILIAMBIENTE S.p.A. | SONDAGGIO: POZZO 3 BADESSE               |
|-----------------------------------------------|------------------------------------------|
| LOCALITA': CENTRALE DI PAROLA                 | QUOTA:                                   |
| IMPRESA ESECUTRICE:                           | DATA:                                    |
| COORDINATE:                                   | REDATTORE:                               |
| PERFORAZIONE:                                 | SCALA: 1:50 orizzontale, 1:500 verticale |



### WATERWORKS: THE SUPPLY NETWORK



190, 7 KM OF SUPPLY NETWORK3 WATER COLLECTION STATIONS19 WATER COLLECTION WELLS

## WATERWORKS: PAROLA'S COLLECTION STATION





### WATERWORKS: THE DISTRIBUTION NETWORK



### **SEWERAGE SYSTEMS**



### **SEWERAGE SYSTEMS**





OUR FIDENZA'S PURIFICATION PLANT (DESIGNED FOR 60.000 EQUIVALENT INHABITANTS)

# **REMOTE CONTROL SYSTEM**

IN TODAY'S RAPIDLY EVOLVING TECHNOLOGICAL SCENARY, DIGITALIZATION OF INTEGRATED WATER SYSTEM NETWORKS HAS BECOME IMPERATIVE FOR EFFICIENT MANAGEMENT AND PRESERVATION OF THIS PRECIOUS RESOURCE.

DIGITALIZATION OF WATER NETWORK IS THE GUIDELINE THAT EMILIAMBIENTE HAS SET ITSELF AS ONE OF ITS PRIMARY OBJECTIVES.

CENTRAL TOOL IN THIS TRANSFORMATION IS THE SCADA (SUPERVISORY CONTROL AND DATA ACQUISITION) WHICH PLAYS A CRUCIAL ROLE IN MONITORING, CONTROLLING, AND OPTIMIZING WATER DISTRIBUTION PROCESSES.



# **BENEFITS OF NETWORK DIGITALISATION**

### INCREASE MONITORING AND CONTROL

WATER UTILITY OPERATORS COLLECTING AND ANALYZING THESE DATAS, CAN IDENTIFY ANOMALIES, SUGGEST IMMEDIATE CORRECTIVE ACTIONS TO

MINIMIZES WATER LOSS & ENSURES UNINTERRUPTED SUPPLY TO CONSUMERS.

### IMPROVE EFFICIENCY

Automation of routine tasks, such as valve adjustments and pump operations, not only saves time and labor but also optimizes energy consumption and reduces operational costs. Predictive maintenance algorithms integrated into SCADA system help prevent equipment failures.

### Smart Water Management and Data-Driven Decision Making

The Abundance of data generated empowers water utility managers to make right decisions regarding network optimization and resource allocation. Advanced analytics tools can identify usage patterns, predict demand fluctuations, and optimize water distribution strategies to meet evolving consumer needs efficiently.

Moreover, historical data analysis facilitates long-term planning and infrastructure development, ensuring the sustainability of water supply systems.

## **INCREASE MONITORING AND CONTROL (EXAMPLE)**



## **IMPROVE EFFICIENCY (EXAMPLE)**

![](_page_14_Figure_1.jpeg)

## DATA-DRIVEN SMART WATER DECISION MANAGEMENT (EXAMPLE 1)

![](_page_15_Figure_1.jpeg)

### **DATA-DRIVEN SMART WATER DECISION MANAGEMENT (EXAMPLE 2)**

| 50       | A                    | В                     | C                  | ο ε                          | F                     | G H               | I J K                                 | a                   | м           | N                  | 0               | P ]0           | 2 R       | s                | т            | U               | V V                            | x                | r z              | AA AE     | AC               | AD AE                   | AF AG               | AH AI                        | AJ          |
|----------|----------------------|-----------------------|--------------------|------------------------------|-----------------------|-------------------|---------------------------------------|---------------------|-------------|--------------------|-----------------|----------------|-----------|------------------|--------------|-----------------|--------------------------------|------------------|------------------|-----------|------------------|-------------------------|---------------------|------------------------------|-------------|
| 1        |                      | N                     | FIDENZA (m         | 13)                          |                       |                   |                                       | SALSON              | AGGIORE (   | m3)                |                 |                |           |                  | BUSS         | SETO (m3)       | V                              |                  |                  | F         | ONTANELLATO      | (m3)                    |                     | 01.<br>01.                   |             |
| 2        | DATA                 | 2018                  | 2019 20            | 20 2021                      | 2022                  | 2023 2024         | 2018 20                               | 9 2020              | 2021        | 2022               | 2023            | 2024           | 2018      | 2019             | 2020         | 2021            | 2022 2023                      | 2024             | 2018             | 2019 202  | 0 2021           | 2022 2023               | 2024                | 2018 2019                    | 202         |
| 3        | Gennaio              | 229.689               | 253.959 28         | 2.357 260.152                | 225.206               | 210.818 214.924   | 170.208 163                           | .277 169.442        | 180.515     | 169.338            | 164.821         | 188.115        | 60.292    | 65.307           | 55.861       | 52.146          | 50.701 59.95                   | 56.131           | 27.720           | 28.398 31 | .251 33.270      | 32.459 34.762           | 29.496              | 62.030 67.65                 | 6 6         |
| 4        | Febbraio             | 223.220               | 223.220 26         | <u>51.844</u> <u>226.220</u> | 195.797               | 189.651 194.761   | 142.286 142                           | 286 149.368         | 159.602     | 149.872            | 141.953         | 164.673        | 60.601    | 60.601           | 46.908       | 46 475          | 51658 56.664                   | 48.603           | 24.518           | 24.518 30 | 684 31.810       | 29.444 26.314           | 27.983              | 64.189 64.18                 | <b>19</b> 6 |
| 5        | Marzo                | 209.358               | 241.163 27         | 7.413 228.821                | 214.271               | 204.123           | 181.184 166                           | .725 153.910        | 165.386     | 168.442            | 161.749         |                | 61.787    | 67.598           | 48.808       | 51.700          | 61.328 58.106                  |                  | 29.970           | 32.283 33 | .916 32.381      | 32.575 28.615           |                     | 65.632 68.30                 | 6 6         |
| 6        | Aprile               | 207.636               | 227.993 27         | 0.673 221.892                | 198.510 2             | 90.792            | 185.076 166                           | 855 164.235         | 160.704     | 170.052            | 165.822         |                | 58.262    | 62.732           | 48.710       | 48.020          | 60.978 53.82                   |                  | 29.492           | 27.773 33 | .143 29.41       | 32.294 27.374           |                     | 64.155 60.73                 | 80 6        |
| 1        | Maggio               | 213.086               | 252.332 30         | 7 705 230 060                | 213.043               | 218.019           | 202.283 173                           | 050 101 001         | 245 260     | 212 999            | 101 / 44        |                | 61.41     | 61.100           | 53.558       | 43.147          | 60.076 03.487<br>60.076 55.176 |                  | 30.899           | 23.131 34 | 335 31.031       | 39.373 28.125           |                     | 64.000 63.26<br>CC 292 71.00 | 7           |
| 9        | luglio               | 254 903               | 274 429 30         | 4 758 242 129                | 225 825 2             | 46 852            | 251889 224                            | 795 231 267         | 240 720     | 248 679            | 228 821         |                | 71 466    | 63 509           | 60 315       | 63 883          | 66.323 56.719                  |                  | 32 727           | 36 354 40 | 977 37 99        | 42 449 34 895           |                     | 74 743 77 89                 |             |
| 10       | Adosto               | 252 961               | 279 779 29         | 1 325 240 137                | 212 274 2             | 56 206            | 253 708 236                           | 357 238 237         | 245 439     | 230 509            | 242 877         |                | 70 781    | 62 640           | 55.085       | 64 694          | 62 730 55 255                  |                  | 34 084           | 32 499 38 | 176 42 741       | 39 184 37 576           |                     | 72 230 72 49                 | 89 8        |
| 11       | Settembre            | 240.810               | 279.942 28         | 9.817 239 558                | 207.853               | 53.013            | 221,713 200                           | 530 213,167         | 219.148     | 205,117            | 222.521         |                | 63.941    | 58.257           | 54.854       | 66.727          | 60.958 53.193                  |                  | 31.624           | 30.828 34 | 690 39.835       | 35,139 33,169           |                     | 68.993 72.33                 | 8 7         |
| 12       | Ottobre              | 252.231               | 273.992 26         | 8.879 233 663                | 213.469 2             | 68.973            | 201.459 19                            | 437 191.411         | 196.126     | 198.962            | 206.744         | -              | 64.581    | 56.048           | 53.825       | 63.061          | 61.859 55.238                  |                  | 29.234           | 30.091 34 | .801 35.797      | 36.585 32.976           |                     | 66.267 70.22                 | 9 7         |
| 13       | Novembre             | 235.478               | 271.948 24         | 1.370 219.284                | 210.200 2             | 33.986            | 162.839 170                           | .176 176.089        | 178.225     | 183.642            | 177.465         |                | 62.720    | 53.313           | 47.096       | 56.688          | 55.958 52.470                  |                  | 26.601           | 29.539 32 | 674 32.55        | 35.154 31.006           |                     | 62.689 68.62                 | 8 7         |
| 14       | Dicembre             | 252.870               | 290.011 24         | 2.677 234.845                | 213.796               | 216.378           | 164.396 17                            | .801 175.540        | 172.713     | 180.261            | 180.726         |                | 63.232    | 56.076           | 50.471       | 59.353          | 57.695 54.783                  |                  | 26.594           | 30.916 33 | 608 33.570       | 35.004 30.457           |                     | 65.674 67.42                 | 20 7        |
| 15       |                      |                       |                    |                              |                       |                   | · · · · · · · · · · · · · · · · · · · |                     |             |                    |                 |                |           |                  | 63 <b></b>   |                 |                                |                  |                  |           | 0                |                         |                     |                              |             |
| 16       | TOTALE Parziale (m3) | 452.909               | 477.179 54         | 4.201 486.372                | 421.003 4             | 00.469 409.685    | 0 312.494 305                         | .563 318.810        | 340.217     | 319.210            | 306.775         | 352.788        | 0 120.893 | 125.908          | 102.769      | 98.621          | 102.359 116.62                 | 104.734          | 0 52.239         | 52.917 61 | 935 65.08        | 61.903 61.076           | 57.479              | 126.219 131.84               | 13          |
| 11       |                      | 1                     | DIFE               | EDENIZA                      | 0.216 m               | ,                 |                                       | DICCORN             | 7.6         | A6 014 m           | <b>m</b> 2      |                |           |                  | DIECEDEN     | 74              | 11 007 m2                      |                  |                  | DIFF      | DENI7A           | 2 [09 m2                |                     |                              | DIFFE       |
| 18       |                      |                       | DIFF               | ENENZA                       | 9.210 m               | 2                 |                                       | DIFFEREN            |             | 40.014             | IID.            |                |           |                  | DIFFEREN     | ZA              | -11.007 105                    |                  |                  | Dirre     | REINZA           | -3.390 1113             |                     |                              | DIFFER      |
| 19       |                      |                       | DIFF               | ERENZA                       | 2,3%                  |                   |                                       | DIFFEREN            | 2A          | 15,0%              |                 |                |           |                  | DIFFEREN     | ZA              | -10,2%                         |                  |                  | DIFFE     | RENZA            | -5,9%                   |                     |                              | DIFFER      |
| 20<br>21 |                      |                       |                    |                              |                       |                   |                                       |                     |             |                    |                 |                |           |                  |              |                 |                                |                  |                  |           |                  |                         |                     |                              |             |
| 22       |                      |                       | FIDEN              | NZA.                         |                       |                   |                                       |                     | BUSSETO     |                    |                 |                |           |                  |              | CC              | LORNO                          |                  |                  |           |                  | SAN SECOND              | 0                   |                              |             |
| 23       | 350.000              |                       |                    |                              |                       |                   | 10.000                                |                     |             |                    |                 |                | 100.00    | ~                |              |                 |                                |                  |                  | 56000     |                  |                         |                     |                              |             |
| 24       | Lon ore              |                       |                    | ~                            |                       |                   | 10,000                                |                     | -           | _                  |                 |                | - NO.001  | -                | _            |                 | A                              |                  |                  | 45060     |                  | 1                       | <                   | -                            |             |
| 26       | 54204                | ~ ~                   | 1                  |                              |                       |                   | > /                                   | ~                   | 1           |                    | 0               |                | 70.001 -  |                  | 1            | 17              | 10-                            |                  |                  | 40000     |                  | 1/                      |                     | _                            |             |
| 27       | 250.000              |                       | - /                |                              |                       |                   | 40.000                                | ~                   | 1           |                    |                 | -              |           |                  |              |                 | 1-7                            | 2                |                  | 35000     |                  |                         | -                   | -12                          |             |
| 28       |                      |                       |                    |                              |                       | ~ _               |                                       | ~ 11                | P           |                    | -               | -              | 60.001    | -                | ~            | 5               | ~~                             |                  | -                | 3000      | 5-               | 1                       |                     |                              |             |
| 29<br>30 | 200.000              |                       | -                  |                              |                       |                   |                                       | ~                   |             |                    |                 | -              | 50.000    | -                |              |                 |                                |                  |                  | 00035     |                  |                         |                     |                              |             |
| 31       |                      |                       |                    |                              |                       |                   | 40.000                                |                     |             |                    |                 |                | 40,005    |                  |              |                 |                                |                  |                  | 20000     |                  |                         |                     |                              |             |
| 32       | 150,000              |                       |                    |                              |                       |                   | 10.000                                |                     |             |                    |                 |                |           |                  |              |                 |                                |                  |                  | 20060     |                  |                         |                     |                              |             |
| 33       |                      |                       |                    |                              |                       |                   | 10000                                 |                     |             |                    |                 |                | 30.001    |                  |              |                 |                                |                  |                  | 15000     |                  |                         |                     |                              |             |
| 35       | 100,000              |                       |                    |                              |                       |                   | 10.000                                |                     |             |                    |                 |                | 20.001    |                  |              |                 |                                |                  |                  | 10000     |                  |                         |                     |                              |             |
| 36       | 50.008               |                       |                    |                              |                       |                   | 0.000                                 |                     |             |                    |                 |                | 10.001    |                  |              |                 |                                |                  |                  | 5000      |                  |                         |                     |                              |             |
| 37       |                      |                       |                    |                              |                       |                   | 10000                                 |                     |             |                    |                 |                | -         |                  |              |                 |                                |                  |                  | 0         |                  |                         |                     |                              |             |
| 38<br>39 | t.—                  |                       |                    |                              |                       |                   | ٥                                     |                     |             |                    |                 |                |           | Germals Falthrai | n Marin And  | in Marati d     | iumo turio tento ir            | tamba Ottolea I  | Assemble Dicembe | Genn      | e Felbaio Marzo  | Aprile Maggo Gugno Iv   | effo Apsito Setter  | the Ottobre Novembre Dicen   | ede         |
| 40       | Ge                   | nnario Febbroio Marzo | Apila Maggi Gugod  | o Lugio Agoino 3             | Sementarie Ottobre No | vembre Excertione | Gennels Felbrais                      | faran Aprile Maggio | Gugie Lugi  | o kyosto Setti     | ardiné. Otlobne | Novembré Dicam | daty      |                  | 2018 -101    | 6 <u></u> 200 - |                                | 1029 - 2/24      |                  |           |                  | -2019                   |                     | 3                            |             |
| 41       |                      |                       |                    | 2021 -2022 -20               | 23 -2124              |                   | _                                     | 2019                |             | -2021              | 3               |                |           |                  | 15200 1000   | S - 23          | 1998 - 1998                    | 39 - 38%<br>A    |                  |           |                  |                         |                     |                              |             |
| 42       |                      |                       |                    |                              |                       |                   |                                       |                     |             |                    |                 |                | 1         |                  |              |                 |                                |                  |                  |           |                  |                         |                     |                              |             |
| 44       |                      |                       | SALSOMA            | GGIORE                       |                       |                   |                                       | F                   | ONTANELLAT  | C                  |                 |                |           |                  |              |                 | SISSA.                         |                  |                  |           |                  | SORAGNA                 |                     |                              |             |
| 45       | 300.000              |                       |                    |                              |                       |                   | 45.000                                |                     |             |                    |                 |                | 90.003    |                  |              |                 |                                |                  |                  | 66.000    |                  |                         |                     |                              |             |
| 46       |                      |                       |                    |                              |                       |                   | 40.000                                |                     | 1           | X                  | _               |                | 80.000    |                  |              |                 |                                |                  |                  |           |                  |                         |                     |                              |             |
| 48       | 250,000              |                       |                    | ~                            |                       |                   | 17.000                                |                     | 1           |                    | >               | _              | -         | ~                | -            |                 | /                              | >                |                  | 51.000    |                  | /                       | ~                   | 2.                           |             |
| 49       |                      |                       | 10                 | 400                          |                       |                   | 15:000                                |                     | P-          | X                  | -               | -              | 70.000    | ~                | -            | -               | -                              | -                |                  |           | ~                | 100                     | _                   |                              |             |
| 50       | 200.000              |                       | 1                  | /                            |                       |                   | \$0.000                               |                     | /           |                    |                 | -              | 60.000    | 1                |              |                 | 4                              | -                | >                | 46.000    |                  | -                       | $\sim$              |                              |             |
| 51       |                      |                       |                    |                              |                       |                   | 25,000                                |                     |             |                    |                 |                | 50.000    | -                |              |                 | /                              | -                | -                | 21.000    | ~                |                         |                     |                              |             |
| 53       | 350.000              |                       | -                  |                              |                       |                   | 20.000                                |                     |             |                    |                 |                |           |                  | $\checkmark$ | /               |                                |                  |                  | JEADU     |                  |                         |                     |                              |             |
| 54       |                      |                       |                    |                              |                       |                   | 15.000                                |                     |             |                    |                 |                | 40.00     |                  | ~            |                 |                                |                  |                  | 25.000    |                  |                         |                     |                              |             |
| 55       | 300.000              |                       |                    |                              |                       |                   | 1999 C                                |                     |             |                    |                 |                | 00.0E     |                  |              |                 |                                |                  |                  | 20.33/040 |                  |                         |                     |                              |             |
| 57       |                      |                       |                    |                              |                       |                   | 10.000                                |                     |             |                    |                 |                | 20.000    |                  |              |                 |                                |                  |                  | 16.000    |                  |                         |                     |                              |             |
| 58       | 50.000               |                       |                    |                              |                       |                   | 5.000                                 |                     |             |                    |                 |                | 10.003    |                  |              |                 |                                |                  |                  |           |                  |                         |                     |                              |             |
| 59       |                      |                       |                    |                              |                       |                   | 0                                     |                     |             |                    |                 |                |           |                  |              |                 |                                |                  |                  | u         |                  |                         |                     | N 2010 N 107 W               |             |
| 60       | 0                    | nala Feltraio Mareo   | Anria Mande Guessi | a Lutio Areste               | Settembre Ottobe M    | parries Disertion | Genseid felturs is                    | Marao Aprile Meggi  | Giagno ilud | iai Agoisto) Serti | Senbre DBabre   | Novembre Dice  | ebe g     | Centralio Febbra | in Marao kor | ile Maggin G    | ilagna Lugfa Agasta Se         | tentini Ottobe B | kvenbie Scanbie  | Genr      | is Febrain Marzo | Aprile Maggio Giugno Li | iglia Agosto Setter | the Othine Novembre Dicer    | nDre        |
| VI I     | 2000                 |                       | Territe C 2022     | Encode -                     |                       | winter C. 2022    | Transfer of the                       |                     | 100.3       | 101 JO             | 12              | (at the second | ANIALINA  | 241.0            | Contine      | A an a the sta  | N Andres                       |                  | and I            | 0         |                  | -200 - 1000 - M21       |                     | 1                            | ih.         |
|          | • Emu                | nto G. 2023 E         | emunto 6. 2022     | Emunto G                     | 1, 2021 Er            | nunto G. 2020     | Emunto G. 20                          | a litend_c          | normalieri  | Perdit             | te in Add       | uzione         | ANALISI   | KAIVII           | Gratici      | viensiii (2     | Analisi e (                    | .onsidera:       | aoni             | ۲         |                  |                         |                     |                              |             |

# SO TO CONCLUDE.....

As we continue to confront the challenges of urbanization, climate change, and resource scarcity, investments in digital infrastructure will be essential to meet the growing demand for safe, reliable, and sustainable water resources.

# THE PROJECT: CREATION OF THE DIGITAL TWIN OF THE WATERWORKS AND SEWERAGE SYSTEMS

### **2 O**BJECTIVES:

**EQUIP OURSELVES WITH AN INNOVATIVE TOOL TO SUPPORT:** 

- 1. THE ORDINARY MANAGEMENT OF THE INTEGRATED WATER SERVICE: FOR EXAMPLE, SIMULATING <u>OUTAGES OR SECTIONING</u> OF THE NETWORKS FOLLOWING MAINTENANCE INTERVENTIONS, OR ANALYZING THE BEHAVIOUR OF THE NETWORK FOLLOWING ADDITIONAL <u>COLLECTIONS/WITHDRAWALS</u> (NEW RESIDENTIAL ALLOTMENTS OR NEW FIRE PREVENTION REQUESTS);
- 2. The definition of the plan of interventions necessary for the elimination of structural criticalities, the further development of the existing infrastructure and its maintenance (Operational Investment Plan).

![](_page_18_Picture_5.jpeg)

![](_page_18_Figure_6.jpeg)

### THE PROJECT: CREATION OF THE DIGITAL TWIN OF THE WATERWORKS AND SEWERAGE SYSTEMS

### FURTHERMORE....A LOOK AT THE FUTURE:

![](_page_19_Picture_2.jpeg)

The creation of the digital twin is also the first step towards predictive management of the evolution of the system through the application of Artificial Intelligence algorithms. The ultimate objective is to obtain a dashboard of indicators of the technical-administrative management of the company <u>Accessible in real time</u> and compliant with the requests of the Industry Authority in terms of technical and commercial quality.

### THE TWO PROJECTS: THE MAIN FEATURES

#### WATERWORKS

![](_page_20_Picture_2.jpeg)

SEWERAGE

![](_page_20_Picture_4.jpeg)

The project for the hydraulic modelling of the WATERWORKS, district division of the network, analysis and research of water losses was developed in 4 distinct steps, carried out from 2020 to 2023:

- 1. Hydraulic modeling;
- 2. Division into districts;
- 3. Search for leaks;
- 4. Development of a water plan for the waterworks.

Economic investment: approximately 1 million euros.

The project for the **development of the SEWERAGE PLAN using hydraulic modeling** developed in 3 steps, again in the period 2020-2023:

- 1. Topographic survey of the sewerage network;
- 2. Hydraulic modelling of the sewerage network for different Rainfall recurrence intervals/return period;
- 3. Development of a sewerage plan.

Economic investment: approximately 430 thousand euros.

**HUMAN RESOURCES:** BOTH PROJECTS WERE ENTRUSTED TO CONTRACTING COMPANIES - SET UP IN ATI (TEMPORARY ASSOCIATION OF COMPANIES)- UNDER THE DIRECTION OF THE COMPANY'S ENGINEERING DEPARTMENT, WHICH OVERSAW THE DESIGN.

![](_page_21_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 4 DISTINCT STEPS.

- 1. HYDRAULIC MODELING;
- 2. SUBDIVISION INTO DISTRICTS;
- 3. LEAKS SEARCH;
- 4. WATERWORKS PLAN.

In details....

- Data collection (through the SIT Territorial Information System-, remote monitoring and inspections);
- Construction of the preliminary model;
- Integration of missing networks and survey points;
- Installation of temporary tools for the implementation of a monitoring campaign;
- > Calibration of the model on the data collected by the monitoring campaign;
- Simulation and verification of scenario correspondence with DHI's Mike+ software.

.... WE ARE GOING TO SHOW YOU THE RESULT!

MIKE

![](_page_21_Picture_15.jpeg)

![](_page_22_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 4 DISTINCT STEPS

![](_page_22_Figure_2.jpeg)

PROJECT 1: HYDRAULIC MODELLING OF THE WATERWORKS SYSTEM

![](_page_23_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 4 DISTINCT STEPS.

### FROM MODELLING...

### 1. HYDRAULIC MODELING;

- 2. SUBDIVISION INTO DISTRICTS;
- 3. LEAKS SEARCH;
- 4. WATERWORKS PLAN.

![](_page_23_Picture_8.jpeg)

### **STEP 2: CREATION OF THE DISTRICTS**

Subdivision of the network into districts, also called DMA (District Meter Area).

The ultimate objective is the rapid identification of problem areas, with the definition of intervention limits and the creation of water balances. Following the definition of the districts, the location of the users and the related consumption, the theoretical loss values attributable to each DMA were calculated and the objectives to be achieved for each area were defined.

![](_page_24_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 4 DISTINCT STEPS:

**FROM CREATION OF THE DISTRICTS....** 

- 1. HYDRAULIC MODELING;
- 2. SUBDIVISION INTO DISTRICTS;
- 3. LEAKS SEARCH;
- 4. WATERWORKS PLAN.

![](_page_24_Picture_8.jpeg)

### **STEP 3: LEAKS SEARCH**

Following the identification of the troublesome districts we performed field activities with instrumentation capable of locating the leaks with non-destructive methodologies (no excavation), using electro-acoustic equipment (such as geophone, recuperator, etc...).

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_2.jpeg)

# STEP 4: DRAFTING OF THE WATERWORKS PLAN

In this phase, we identified the necessary interventions for each municipality in order to solve the detected hydraulic and environmental criticalities and to make the of the collection, supply and distribution system increasingly energy efficient (replacement of the oldest pipe sections, energy efficiency measures, maintenance/ replacement of hydraulic tools and parts).

We then assigned a priority factor to each intervention using the Multi-Criteria Analysis (MCA) for water pipes to support decision-making.

## THE PROJECT WAS DEVELOPED INTO 4 DISTINCT STEPS.

FROM LEAK SEARCH....

- 1. HYDRAULIC MODELING;
- 2. SUBDIVISION INTO DISTRICTS;
- 3. LEAKS SEARCH;
- 4. WATERWORKS PLAN.

![](_page_25_Figure_12.jpeg)

![](_page_26_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 3 DISTINCT STEPS:

### Step 1: TOPOGRAPHIC SURVEY OF THE SEWERAGE NETWORK

- Topographic survey of the network (blackwater and wastwater);
- Survey of particular artefacts (culvert, etc.);
- Return of surveys in Shape format (also included in the Emiliambiente S.I.T.).

- 1. TOPOGRAPHIC SURVEY OF THE SEWERAGE NETWORK;
- 2. HYDRAULIC MODELLING OF THE SEWERAGE NETWORK FOR DIFFERENT RAINFALL RETURN PERIOD;
- 3. DEVELOPMENT OF A SEWERAGE PLAN.

![](_page_26_Figure_10.jpeg)

![](_page_27_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 3 DISTINCT STEPS

**FROM TOPOGRAPHIC SURVEY...** 

![](_page_27_Picture_4.jpeg)

- 1. TOPOGRAPHIC SURVEY OF THE SEWERAGE NETWORK;
- 2. HYDRAULIC MODELLING OF THE SEWERAGE NETWORK FOR DIFFERENT RAINFALL RETURN PERIOD;
- 3. DEVELOPMENT OF A SEWERAGE PLAN.

Step 2: Hydraulic modelling of the sewerage network for different rainfall return period;

- Construction of the preliminary model;
- Integration of missing networks and survey points;
- Installation of temporary tools for the implementation of a monitoring campaign;
- Calibration of the model on the data collected by the monitoring campaign;
- Simulation and verification of scenario correspondence with DHI's Mike+ software;
- > Hydraulic modelling and model calibration for every Municipality.

![](_page_27_Picture_15.jpeg)

![](_page_28_Picture_0.jpeg)

## THE PROJECT WAS DEVELOPED INTO 3 DISTINCT STEPS

![](_page_28_Picture_3.jpeg)

### RAINFALL RETURN PERIOD = 2 YEARS

Some criticalities have been detected already after a return period of 2 years in the estern part of the city, problems that increased for a return period of 10 years in other parts of the city.

### RAINFALL RETURN PERIOD =10 YEARS

![](_page_28_Picture_7.jpeg)

![](_page_29_Picture_0.jpeg)

STEP 3: DEVELOPMEMT OF THE SEWERAGE PLAN AND IDENTIFICATION OF THE RELEVANT REMEDIAL INTERVENTIONS. COMUNE DI SAN SECONDO PARMENSE ATTUAZIONE PIANO FOGNARIO RETI COMPRENSORIO DI EMILIAMBIENTE SPA SCHEDA INTERVENTO

FROM MODELLING...

| INTERVENTO SSP-08                                 |                                                                                                                               |        |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| Descrizione sintetica                             | Potenziamento di un tratto di condotta lungo Via Verdi                                                                        |        |  |  |  |  |  |  |
| Tipologia intervento                              | Eliminazione oriteità idraulica                                                                                               |        |  |  |  |  |  |  |
| Indice di priorità intervento                     | 8*                                                                                                                            |        |  |  |  |  |  |  |
| Aree interessate                                  | Via Verdi                                                                                                                     |        |  |  |  |  |  |  |
| Descrizione opere                                 | Potenziamento tratto di rete in Via Verdi - scatolare 100x200 CA                                                              |        |  |  |  |  |  |  |
| Dbiettivi dell'intervento<br>Vincoli realizzativi | Miglioramento delle criticità idrauliche nella zona in esame<br>L'irtervento può essere realizzato indipendentemente da altri |        |  |  |  |  |  |  |
| Lunghezza tratto [m]                              | 510                                                                                                                           |        |  |  |  |  |  |  |
| Volume invaso [m³]                                | -                                                                                                                             |        |  |  |  |  |  |  |
| Costo stimato opere                               | € 1'518                                                                                                                       | 00.000 |  |  |  |  |  |  |

THE PROJECT WAS DEVELOPED INTO 3 DISTINCT STEPS

- TOPOGRAPHIC SURVEY OF THE SEWERAGE NETWORK;
- HYDRAULIC MODELLING OF THE SEWERAGE NETWORK FOR DIFFERENT RAINFALL RETURN PERIOD;

amiliAmbiente

**3**. DEVELOPMENT OF A SEWERAGE PLAN.

![](_page_29_Figure_9.jpeg)

INTERVENTO SSP-08 - Planimetria di progetto

![](_page_30_Picture_0.jpeg)

1. USE OF MODELS IN ORDINARY MANAGEMENT: GREATER EFFICIENCY IN MANAGEMENT, DESIGN AND RESOLUTION OF CRITICAL ISSUES.

**2.** DEFINITION OF A PRIORITY INTERVENTION PLAN: BASED ON THE OUTCOMES OF THE TWO PROJECTS, TECHNICAL TABLES PERMANENT WERE CREATED DURING 2023 INVOLVING THE ADMINISTRATIONS OF ALL THE MUNICIPALITIES SERVED, WITH THE AIM OF DEVELOPING A JOINT STRATEGY FOR THE PLANNING OF STRUCTURAL INVESTMENTS AND THE SEARCH FOR THE FUNDING. THE TWO PROJECTS NFCFSSARY ALSO PROVIDED FUNDAMENTAL SUPPORT FOR THE DRAFTING OF THE 2024-2029 OPERATIONAL INVESTMENT PLAN.

### **....AND FOR THE FUTURE:**

THE COMPANY IS CONSIDERING A COLLABORATION WITH SCIENTIFIC PARTNERS WITH WHOM TO DEVELOP PREDICTIVE MANAGEMENT OF THE EVOLUTION OF THE SYSTEM THROUGH THE APPLICATION OF ARTIFICIAL INTELLIGENCE ALGORITHMS BASED UPON DIGITAL TWINS OF THE NETWORKS.

![](_page_31_Picture_2.jpeg)

### **EXEMPLE:**

- Model: tells us how the system should be (e.g. district X must consume 300 m3);
- Remote control system: it tells us in real time how the system actually is (e.g. district X actually consumes 500 m3);
- The software: connects the two systems, identifies any possible deviations and send out alerts.

![](_page_32_Picture_0.jpeg)

### THANK YOU FOR YOUR ATTENTION FROM ALL THE EMILIAMBIENTE'S STAFF!